

ESR Spectra of Transient Radical Cations of NADH Analogues

Shunichi FUKUZUMI* and Toshiaki KITANO

Department of Applied Chemistry, Faculty of Engineering,
Osaka University, Suita, Osaka 565

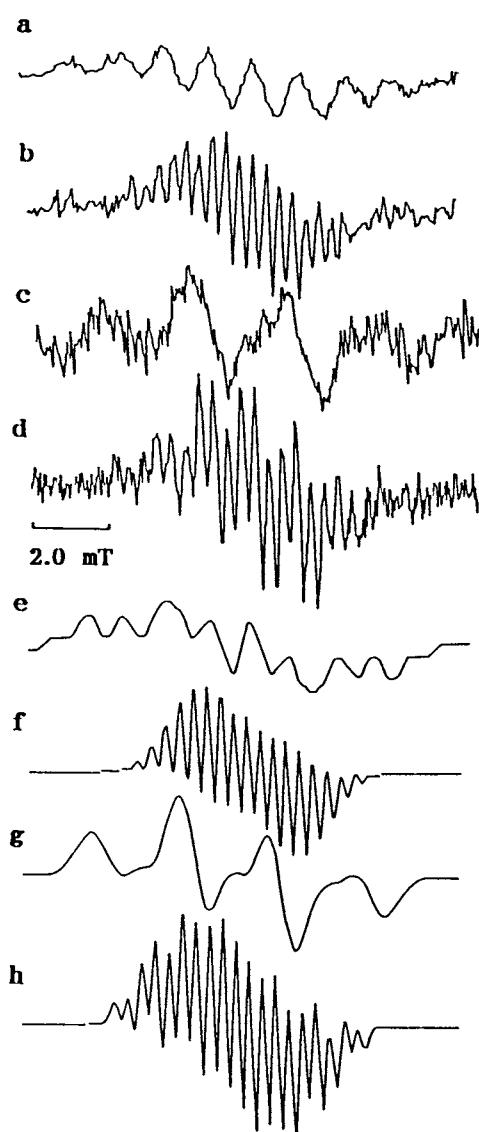
Electron spin resonance (ESR) spectra of transient radical cations of 9,10-dihydro-10-methylacridine and derivatives, which are NADH analogues, are observed in electron transfer reactions from the NADH analogues to Fe^{3+} or Cu^{2+} in acetonitrile.

The biological importance of dihydronicotinamide adenine dinucleotide (NADH) used as an electron source has attracted considerable interest in electron-transfer reactions from NADH and its analogues to various one-electron oxidants.¹⁻³⁾ However, no ESR spectra of the radical cations of NADH and analogues have so far been reported because of the instability, although the electronic spectra of NADH and analogues have recently been reported by applying picosecond laser technology.^{4,5)} This study reports the first observation of ESR spectra of transient radical cations of NADH analogues formed in electron transfer reactions with Fe^{3+} and Cu^{2+} in acetonitrile by applying a rapid-mixing flow technique.

Mixing an acetonitrile (MeCN) solution of $\text{Fe}(\text{ClO}_4)_3$ with an NADH analogue, 9,10-dihydro-10-methylacridine (AcrH_2),³⁾ by using a rapid-mixing flow apparatus results in the observation of an ESR signal as shown in Fig. 1a. Essentially the same transient ESR signal is obtained when the oxidant $\text{Fe}(\text{ClO}_4)_3$ is replaced by $\text{Cu}(\text{ClO}_4)_2$. The ESR signal decayed rapidly when the flow of the reactant solution was stopped (half life is shorter than 0.1 s). The observed ESR signal may be ascribed to the radical cation of AcrH_2 ($\text{AcrH}_2^{+\cdot}$) formed by electron transfer from AcrH_2 to Fe^{3+} (or Cu^{2+}), although the resolution of the spectrum is not good enough to confirm this assignment. In such a case, deuterium substitution at appropriate known sites may permit an experimental verification of the assignment of the observed radical species, since a single deuteron gives a triplet (instead of doublet) hyperfine pattern and the deuteron splitting should decrease by the magnetogyric ratio of proton to deuterium (0.153).⁶⁾ In fact, deuterium substitution of two hydrogen atoms at C-9 position and that of three hydrogen atoms at N-CH₃ position of AcrH_2 result in drastic changes in the

splitting pattern from broad 8 major lines to 17 and 4 lines as shown in Figs. 1b and 1c, where AcrH_2 is substituted by $[9,9-\text{H}_2]-\text{dihydro-10-methylacridine}$ (AcrD_2) and 9,10-dihydro-10- $([\text{H}_3]\text{methyl})$ -acridine ($\text{AcrH}_2\text{-CD}_3$), respectively. The substitution of one hydrogen atom with isopropyl group at C(9) position also causes the change in the splitting pattern as shown in Fig. 1d where AcrH_2 is replaced by 9,10-dihydro-9-isopropyl-10-methylacridine $\text{AcrH}(\text{Pr}^i)$.⁷⁾

The observed ESR spectra in parts a-d in Fig. 1 can be simulated with the parameters listed in Table 1 as shown in parts e-h of Fig. 1, respectively. The assignments of radical cations of AcrH_2 and derivatives in Table 1 are ensured by comparing the hyperfine splitting (hfs) values of $a_{\text{H}}(\text{C-9})$, $a_{\text{D}}(\text{C-9})$, $a_{\text{H}}(\text{CH}_3)$, and $a_{\text{D}}(\text{CD}_3)$, since the hfs values of 2.34 and 0.74 mT due to C-9 and N-CH₃ protons of AcrH_2^+ are decreased by the factor of the magnetogyric ratio of proton to deuterium (0.153) to 0.36 and 0.11 mT due to C-9 and N-CD₃ deuterons of AcrD_2^+ and $\text{AcrH}_2\text{-CD}_3^+$, respectively, when other hfs values are identical. As shown in Table 1, $a_{\text{N}}(\text{N-CH}_3)$ value (1.01 mT) of AcrH_2^+ is larger than the $a_{\text{H}}(\text{N-CH}_3)$ value (0.74 mT), although the reported $a_{\text{N}}(\text{N-CH}_3)$ value (1.6 mT) of Me_3N^+ radical cation, which is known to be planar, is smaller than the $a_{\text{H}}(\text{N-CH}_3)$ value (2.82 mT).⁸⁾ In the case of planar Me_3N^+ radical the SOMO (semi-occupied molecular orbital) is



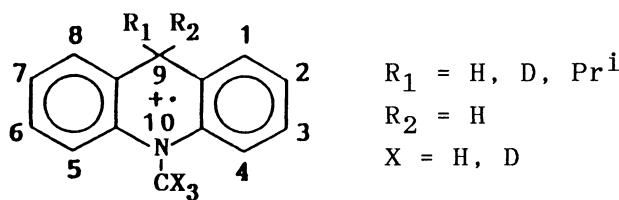

Fig. 1. ESR Spectra of transient radical cations of NADH analogues, observed in electron transfer from (a) AcrH_2 (1.2×10^{-3} mol dm⁻³), (b) AcrD_2 (2.0×10^{-3} mol dm⁻³), (c) $\text{AcrH}_2\text{-CD}_3$ (1.2×10^{-3} mol dm⁻³), and (d) $\text{AcrH}(\text{Pr}^i)$ (1.5×10^{-3} mol dm⁻³) to $\text{Fe}(\text{ClO}_4)_3$ (1.0×10^{-3} mol dm⁻³) in MeCN. (e-h) Computer simulation spectra of AcrH_2^+ , AcrD_2^+ , $\text{AcrH}_2\text{-CD}_3^+$, and $\text{AcrH}(\text{Pr}^i)^+$, using the parameters in Table 1, respectively.

Table 1. Hyperfine Splitting Values of Radical Cations of NADH Analogues

Radical Cation	hyperfine splitting value (hfs) / mT ^a				
	$a_H(C-9)$	$a_N(N-CH_3)$	$a_H(N-CH_3)$	$a_H(C-2)$	$a_H(C-7)$
$AcrH_2^{+ \cdot}$	2.34	1.01	0.74	0.34	0.34
$AcrD_2^{+ \cdot}$	0.36	1.01	0.74	0.34	0.34
$AcrH_2-CD_3^{+ \cdot}$	2.34	1.01	0.11	0.34	0.34
$AcrH(Pr^i)^{+ \cdot}$	1.42	1.01	0.74	0.34	0.34

a) The ΔH_{msl} values of $AcrH_2^{+ \cdot}$, $AcrD_2^{+ \cdot}$, $AcrH_2-CD_3^{+ \cdot}$, and $AcrH(Pr^i)^{+ \cdot}$ are 0.21, 0.14, 0.40, and 0.14 mT, respectively.

strongly confined to the $2p_z$ orbital on nitrogen, when the $a_N(N-CH_3)$ and $a_H(N-CH_3)$ values are determined by the small 2s population which appears solely by spin polarization of the σ -bonding electrons and the $2p_z$ population on nitrogen, respectively. Thus, the larger $a_N(N-CH_3)$ value of $AcrH_2^{+ \cdot}$ than $a_H(N-CH_3)$ value suggests the non-planarity of $AcrH_2^{+ \cdot}$ at nitrogen, since the deviation from planarity may result in the increase in the 2s population on nitrogen and thereby the $a_N(N-CH_3)$ value may increase as compared to the $a_H(N-CH_3)$ value. Our preliminary MNDO calculations⁹⁾ support this prediction as well as the assignment in Table 1 as follows. The folding angle between the planes of the two benzene rings of 9,10-dihydro-9-*t*-butylacridine is reported to be 150.2° ,¹⁰⁾ which is increased to 164° in the best-fit calculation for $AcrH_2^{+ \cdot}$ where the degree of non-planarity of $AcrH_2^{+ \cdot}$ is estimated to be approximately inbetween the reduced form $AcrH_2$ being a boat conformation and the oxidized form $AcrH^+$ being planar. In such a case the hfs value of axial C-9 proton ($a_{Hax} = 2.39$ mT) is calculated to be larger than that of equatorial C-9 proton ($a_{Heq} = 1.98$ mT). In the ESR spectrum of $AcrH_2^{+ \cdot}$, however, the two C-9 protons are equivalent, $a_H(C-9) = 2.34$ mT, which agrees with the average value (2.19 mT) of a_{Hax} and a_{Heq} . Thus, the inversion of the boat structure may occur rapidly in solution in the ESR time scale. The other predicted hfs values

$R_1 = H, D, Pr^i$

$R_2 = H$

$X = H, D$

of AcrH_2^{+} being $a_N(\text{N-CH}_3) = 0.99$, $a_H(\text{N-CH}_3) = 0.67$, $a_H(\text{C-2}) = a_H(\text{C-7}) = 0.23$ mT agree well with the observed hfs values in Table 1.¹¹⁾ In the case of $\text{AcrH}(\text{Pr}^1)$ the isopropyl group may be fixed in a boat-axial conformation with respect to the central acridine ring as observed for the *t*-butyl group of 9,10-dihydro-9-*t*-butylacridine.¹⁰⁾ This may be the reason why the $a_H(\text{C-9})$ value of $\text{AcrH}(\text{Pr}^1)^+$ (1.43 mT), which may be ascribed to the equatorial proton, is smaller than the averaged $a_H(\text{C-9})$ value of AcrH_2^{+} (2.34 mT).¹²⁾ Although application of the present method to observe the ESR spectra of radical cations of NADH and other analogues has been unsuccessful because of the instability of the radical cations, the present study demonstrates for the first time the presence of large hfs values of two active methylene protons [$a_H(\text{C-9})$] of NADH analogues.

References

- 1) E. M. Kosower, "Free Radicals in Biology," ed by W. A. Pryor, Academic Press, New York (1976), Vol. 2, p. 1; S. Yasui and A. Ohno, *Bioorg. Chem.*, 14, 70 (1986).
- 2) T. Okamoto, A. Ohno, and S. Oka, *J. Chem. Soc., Chem. Commun.*, 1977, 18; M. F. Powell, J. C. Wu, and T. C. Bruice, *J. Am. Chem. Soc.*, 106, 3850 (1984); S. Fukuzumi, Y. Kondo, and T. Tanaka, *T. J. Chem. Soc., Perkin Trans. 2*, 1984, 673; S. Fukuzumi, S. Mochizuki, and T. Tanaka, *Inorg. Chem.*, 29, 653 (1990).
- 3) S. Fukuzumi and T. Tanaka, "NAD(P)H, NAD(P) $^{+}$, and Analogues," in "Photoinduced Electron Transfer," ed by M. A. Fox and M. Chanon, Elsevier, Amsterdam (1988), Part C, pp. 578-636.
- 4) B. Czochralska and L. Lindqvist, *Chem. Phys. Lett.*, 101, 297 (1983).
- 5) L. E. Manring and K. S. Peters, *J. Am. Chem. Soc.*, 107, 6452 (1985).
- 6) J. E. Wertz and J. R. Bolton, "Electron Spin Resonance Elementary Theory and Practical Applications," McGraw-Hill, New York (1972).
- 7) The $\text{AcrH}(\text{Pr}^1)$ was prepared by the photoreduction of AcrH^{+} with isobutyric acid in the presence of NaOH in MeCN/H₂O; S. Fukuzumi, T. Kitano, and T. Tanaka, *Chem. Lett.*, 1989, 1231.
- 8) G. W. Eastland, D. N. R. Rao, and M. C. R. Symons, *J. Chem. Soc., Perkin Trans. 2*, 1984, 1551.
- 9) M. J. S. Dewar and W. Thiel, *J. Am. Chem. Soc.*, 99, 4899 (1977).
- 10) S. Shirley, S. Chu, and R. D. Rosenstein, *Acta Crystallogr., Sect. B*, 35, 480 (1979).
- 11) The hfs values of C-1(8), C-3(6), and C-4(5) protons are estimated as 0.002, 0.052, and 0.12 mT, respectively.
- 12) The difference in the folding angle between AcrH_2^{+} and $\text{AcrH}(\text{Pr}^1)^+$ may also affect the hfs value.

(Received May 1, 1990)